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Quantization scheme based on the extension of phase space 
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Abstract A new quantization scheme b p p e d .  zhe similarity of geometric and 
eoMliant quantizalion of a certain class of anstrained dynamical qxtems is shown. A 
method U) calculate anomalies is developed. 

l. Intmduction 

Quantization of dynamical systems is one of the central problems of mathematical 
physics. At the same time the procedure of constructing a quantum theory 
corresponding to a given classical system is not unique. Various different approaches 
have been considered (see e.g. [1-4] and references therein). 

A quantization scheme which we discuss in this note is, in a certain sense, opposite 
to the scheme of the nonavariant quantization [I]. For a given initial Hamiltonian 
system we construct a (classically) equivalent extended system with constraints. Then 
the extended system is quantized by the covariant methodll. 

Of course, there are many different psibilities to extend the initial dynamical 
system. We propose a ‘minimal’ scheme of extension, which, at the same time, is 
quite general.’ It can be used for finite and for infinite dimensional cases. Although 
our quantization method includes several steps, its main advantage is the simple form 
of the physical operators in the extended space. In particular, this simplifies the 
operator ordering problem and the consideration of anomalies. 

The covariant quantization of the constructed extended systems turns out to 
be very similar to the geometric quantization [2] of the initial systems. In our 
quantization scheme, the so called prequantization operators of the geometric 
quantization arise as well, and the restriction (by constraints) of the extended Hilbert 
space to the physical subspace is analogous to the choice of polarization in the 
geometric quantization [2]. Thus, we have the following scheme: 

On leave fmm: liblisi Mathematical Institute, 380093 liblisi, Georgia. 
\I For simplicity, we assume that the initial dynamical system has no constraints. 
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In the following we shall briefly consider the quantization scheme based on the 
extension of phase space by second class constraintst. 

The current paper is organized as follows. In section 2 ow extension scheme 
is described. In section 3 we consider the covariant quantization of the obtained 
extended systems. As an application, we give a method to calculate the anomalies in 
the commutation relations of the physical operators. Section 4 contains concluding 
remarks. 

2. The scheme of extension of phase space 

Let us consider the symplectic manifold y with local coordinates t k ( k  = 
1,2, . . . , 2 N )  and symplectic 2-form w 

w = fwkl(t)dtkAdt'.  

The anti-symmetric matrix w k l ( z )  defines the Hamiltonian structure in y (see 

(i) For any smooth function H ( z )  in y one can construct the Hamiltonian vector 
e.g. 161). Indeed 

field 

FH = @a, (2.1) 

with components 

Fk - kl 
H - w ( O a l W t )  

and correspondingly obtain the equations of motion 

ik = Fk(5)- (2.2) 

(ii) For any smooth functions G and H on y one can define the Poisson brackets 
(PB) as 

{G, H}7 wk'a,G0,H (2.3) 

and thereby introduce the Lie algebra structure. 

t More details and the scheme of quantization wilh the extension of phase space by tint dass mnstrainll 
are considered in [SI. 
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Here wkf(E) is the inverse matrix of w k l ( [ )  

For an exact ;?-form w, w = de, the matrix wkl can be expressed in terms of the 
components of the I-form 0 

wkl = akO, - alek (2.4) 

where 0 = BkdEk. In this case the Hamilton equations (2.2) can be obtained by the 
variation of the action 

(2.5) 

The standard method of quantization of a system with the action (2.5) consists 
of choosing Darboux coordinates and then performing canonical quantization [7]. 
This method is problematic in the case when the canonical variables are defined 
in a bounded region, e.g. when the phase space is compact [SI. The construction 
of Darboux coordinates in an explicit form, generally speaking, is also a non-trivial 
problem. 

In order to avoid these difficulties we propose the following quantization schemet. 
Let us consider the integrand in (25) as the Lagrangian in the Lagrange formalism 

L(E,O = ek(E)ik - H(E). (2.6) 

Then, we cany out the Legendre transformation. Since the Lagrangian (2.6) is 
singular 

one gets in the Hamilton description a constrained dynamical system [I]. 
Introducing the momentum variables 

we get the extended phase space r with the coordinates t k  and Pk. From the 
Lagrangian (2.6) we obtain the constraints 

4 k  = pk - (2.7) 

and the canonical Hamiltonian 

t A similar point of \iew on the quantization of systems with action (2.5) was presented in [9] where the 
Dirac brackets formalism was used in order to remove the unphysical degrees of M o m .  In contrast to 
[9], in what follows we will mnsider a quantization scheme based on the Gupta-Bleuler-type reduction 
ol unphysical d e g m  of freedom. 
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Hence, we derive the action [l] 

s = Pkdtk - [E(€ )  t Xk(t)4# 

where Xk are the Lagrange multipliers. 
For the PB of the constraints (in r) one can check that 

Since det wkl Cl # 0, the constraints +k are of second class. The Lagrange 
multipliers are obtained from the consistency conditions 

& I =  { H + A k & k , 4 1 } = 0 .  

This gives 

= wk'alH. 

The total Hamiltonian now takes the form 

H,,= H + w k ' a l H 4 k =  RH(E,P).  (2  10) 

As a result we obtain a system with the action 

S = Pkdtk - RH(€ ,  P)dt (211) 

and with the constraints given in (2.7). It is clear that the restriction of the system 
(2.11) by the constraints (2.7) gives the initial system (25). Thus, (211) together with 
(2.7) defines the desired extension of the initial Hamiltonian system (2.5). 

Furthermore, in analogy to (2.10), for any smooth function G(<) in y we can 
construct the corresponding function RG(C, P) in r 

G('f) - R G ( E ,  p, = G(€)  + wk'(<)alG(E)4t(E, (212) 

This class of functions in r will be called the observable functions and the 
manifold rktricted by the constraints (2.7) Wiil be called the physical subspace 
(l", = 7). Note that these functions are linear in momentum variables Pk . Using 
(23) and (2.9) one checks that 

{RG, RHI = R{G,H); (2.13) 

Sometimes it is convenient to change from the coordinates Pk, E k  to the variables 

~ ~ = R ~ k = E ~ + w " ( P j - 6 ~ ) .  (2.14) 

Therefore, the mapping (212) preserves the PB of observables. 

4 k , x k ,  where 

For the PB of the new variables we have 
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and 

Then we have for the observables 

RG(E,P)I, = G(E). 

The PB (216) take b e  form 

(217) {RG,X k } l r = w k j a j G  {R~,'$~}l,=o. 

Thus, the physical subspace is invariant under the canonical mnsformations 
generated by the observable functions R,. The coordinates in Y (xkIly = E' )  
are transformed in the same way as in the initial Hamiltonian theory (2.5) by the 
corresponding function G(C). 

We conclude this section with the following comment A change of the observable 
functions R, by terms of quadratic or higher order in the variables 4k 

R, -+ E, = R, + C'"& +- ' 1  ' (2.18) 

produces the functions E,  with the same properties (2.17) as the initial E,. So, for 
any function G(E) there exists the class of functions (2.18) which are undistinguishable 
in the physical subspace. R, is the simplest one from this class. 

3. The covariant quantization of extended systems 

3.1. Qerators in the atended Hilben space 

If the constraints are ignored, the quantization of the system (2.11) is trivial, and it 
is natural to choose the coordinate representation. Then, the Hilbert space is b(r) 
with the invariant measure 
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The coordinate operator i k  
conjugate momentum operator takes the form 

s k  is the mdtiplication operator while the self- 

Then, for the observable operators f L G  from (2.7) and (212), we get 
~ L G  = G(€) - e~(E)wki(t)arG(E) - h W k i ( t ) 4 G ( € ) %  

f L G = ~ - e ( ~ G ) - ~ ~ G .  (3.1~) 

Note that the operator ordering problem has been solved by the symmetric choice 
Wki(E)8,G(E)Pk -+ i[f’d’(E)atG(c) f w k r ( ~ ) a r G ( ~ ) ~ k . ] .  

One checks that the operaton f L G  are self-conjugate in the Hilbert space under 

which by using (2.1) takes the form 

Thus, we get just the operators of prequantization 121. 

consideration. They preserve the Lie algebra structure, (cf (213)) 

&HI = -ihR{G,H)T. (3.2) 

ks an example, let us consider the two-dimensional flat case With 7 = Rz. 
Introduce the global Darboux coordinates q and p 

Then B and w take the form 
F’ 9 s= --+ q, P. 

(3.3) 
0 -1 e = pdq + dF(q,p) = ( o )  

With an arbitrary function F(q,p). 
For the observable operators (3.1) and the constraints (2.7) one gets 

~ L G  = G(q,p) + apGJq - a,GJp (3.16) 

J, = -%a, - p - a,F(q,p) 4p = -itLa, - apF(q,p).  (3.1~) 
Note that the operators kG with different arbitrary functions F are related by 

unitary transformations 

For convenience we choose F = -qp/2 Then the operators which correspond 
to the coordinate functions q and p take the form (cf (2.14)) 

For the operators of the constraints (3.1~) we have 
, 2 q +  p - ~ q  k =$p-ifia 4 = - XP. * (3.5) 

4 , =-1 ,P -%a , dP=$q- ihap .  0.6) 

[j?q,2p1 = ifi [4q,4p1 = -a [2> 41 = 0 (3.74 

& = 1  i l i a = -  
P 

Considering instead of the basis $, 6, f’, , Pp the basis of operators 2,, gP, J4, 4, 
we arrive at the following commutation relations: 

(3.76) 
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3.2. Choice of the quantum physical subspace 

Having in mind ow initial system given by action (2.5), we see that the Hilbert 
space h ( y )  describes superficial degrees of freedom. We must restrict it by using 
the constraints. For simplicity let us consider again the twodimensional flat case 
(3.3). Note that it can be easily generalized to the multi-dimensional case (see e.g. 
subsection 3.4). 

We cannot simultaneously impose the conditions J q 1 $ )  = 0 and &I$) = 0 on 
the state vector, since these contradicts to the commutation relations (3.7a). Note 
that the solution consistent with only one of the conditions J q l $ )  = 0 or &I$) = 0 
does not belong to the Hilbert space &(Rz). 

From quantum mechanics it is known [lo] that a quantum state 111) which 
corresponds to the classical state p = q = 0 is the vacuum in the coherent state 
representation and is defined as a solution to the equation (Q + $)I$) = 0. 

We shall do the same and choose the physical subspace as a vacuum with respect 
to the variables +q, q$,. Thus, we introduce the 'creation' and 'annihilation' operators 

where 01 is a real parameter. The vectors of the physical Hilbert subspace H;h are 
determined as the solutions to the equation [4] 

Jal$* >= 0. 0.9) 

Note that the physical subspaces Hgh for different ct are unitary equivalent 

where IC = In(p/a) /2 and .d = (JPJq + JqJP)/2. 
Using (3.6), from (3.9) we obtain the general solution of the form 

with $ an arbitrary function. 
Now, if one introduces the complex variables 

then the solution (3.11) can be written as follows 

@p6(z,z') = exp(-izz*)+(z*). 

For the scalar product of the physical states one gets 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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Thus, we have rederived the well known holomorphic representation [3,11]. 
'ib further clarify this result we introduce the creation and annihilation operators 

kZ and a,. according to (3.5) and (3.12) 

8, = $2 + a,. 8 z- - - $.*-a, (3.15) 

and check that 

(3.16) 

merefore, we have the correspondence 

with the annihilation and creation operators, S and S', from the holomorphic 
representation 13,111. 

Note that from the obtained representation, (3.la) and (3.11), by choosing 
different a and F(q,p), one can obtain a different unitary equivalent representation 
(see (3.4), (3.10)). In particular, the ordinary coordinate and momentum 
representations appear in the limits a -+ co(F = 0) and a -+ O(F = -pq), 
respectively. 

Indeed, in the case F = 0, the operators &q and &p take the form (cf (3.6)) 

Jq = - p - m  'I Jp = -imp. 
Then, due to (3.8) and (3.9) the vectors of physical subspace are the functions 

with an arbitrruy $. The scalar product takes the form 

and in the limit Q -+ 00 we get 

( ~ ~ h , i ~ * ~ h , z ) ~  = Jdq+i(q)+z(q) 

where $l,z(q) are the solutions of (3.9) in the case of Q - 00 (F = 0). Similarly, it 
is easy to check that in the case of a = 0 ( F  = - q p )  the momentum representation 
will be obtained. 
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3.3. Observable operators in the physical subspace 

As it was mentioned in the previous section, the classical physical subspace rph is 
invariant under the transformations generated by the class of equivalent observable 
functions E, (see (2.17), (2.18)). In the quantum case the situation is different. In 
the quantum physical subspace H;h one gets different operators for the classicaUy 
equivalent functions since, in general 

C ' k ( c ) h ' $ k  f ".)Iq@) # O. 

Thereby, the classical equivalence is broken. On the other hand, using (3.76) one 
can check that for the observable operators a, the invariance condition of H S  
(k,HS c HFh) restricts the class of real functions G(q, p) 

G ( q , p )  = a , + a l q +  a z p f  a h Z +  (3.18) 

where ak (k = 0, 1,2,3) are real numbers. For functions G(q, p) different from 
the class (3.18), one has a problem of defining the corresponding operators in the 
quantum physical subspace. It will be shown later that the class zG includes such 
operators. 

The geometric structure of the Hilbert space implies the following definition of 
the operators in the physical Hilbert subspace 

&,ph = paaGpa.  (3.19) 

Here pa is the projection operator on the qh 
m 

pa = Iqn)PnI  (3.20) 
n=U 

and the orthonormal basis qn in Hih can be chosen as 

(3.21) 

Note that the operator pa is self-conjugate and, as a projector on vacuum (with 
respect to the variables $ and 4q), can be represented as the normally ordered 
exponent [3,11] 

It is clear that the operators and k, have the same matrix elements in the 
HFh. Using the representation (3.22), we see that the classical expression of 
is contained in the class E,. Thus, a question arises about the relation between the 
operators &+, and the corresponding operators in the holomorphic representation. 
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For the monomial functions G = znz" (with arbitrary non-negative integer n 
and m) it can be checked that 

From this, using (3.13)-(3.16), one gets the following correspondence rule 

-n - e m  -re-l-.m-l kr.z.-,ph + a  a - n m a  a 

with the aeation and annihilation operators, 8' and 8, from the holomorphic 
representation. 

As a result, for n or m < 1 one obtains normal ordering. For n > 1 and m > 1 
we obtain some unusual ordering. 

Therefore, (3.19) is the correct definition of the operators in the physical Hilbert 
space It corresponds to the definite operator ordering in the usual canonical 
quantization. 

It can be shown [SI that deforming the operator kG by terms proportional to the 
fust and higher powers of h, one can obtain another operator ordering. 

3.4. Anomalies 

The representation (3.19) is convenient in the analysis of the anomalous commutation 
relations of the physical operators. 

In the physical subspace HFh the operators (3.19) have the form 

For the commutators one gets 

(*phi[%, @IllQ&) = (QphlBGpaAH - kHpaAGIQph)' 

Equation (3.23) implies that if one of the operators A, or a, commutes with the 
projection operator pa, then the anomaly in the commutation relations (3.23) is 
absent 

Inserting the expression (3.22) for the projection operator in (3.23) and using 
(3.2) we obtain 

where the anomaly teG- A( G, H )  has the form 

As far as 6-1QF) = 0 and [&,6J - f i  (see (3.7b)), we find that the anomaly 
is quadratic or of hgher power in 5. 
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For illustration consider the flat phase space with coordinates 

4",P, p = h 2 , . . .  

and the 1-form 0 

8 = 1  ,P, d 4" - WdP,.  

Introducing the complex variables zk 

k = f l , k 2 ,  ... alk lq lk l  +iEkPlkl 
zb = 

where 

for the components of the 1-form 0 we have 

0 - - p 1. z- (without summation). (3.25a) 

Correspondingly, the symplectic matrix wkf and its inverse take the form (see (24)) 

(3.25b) w k f  = -kk'k+f,O = ('")ill. 

Then, due to (2.7) we obtain the operators dk 

( 3 . W  dk = -hazk - i l E k z - l i  1 .  

with commutation relations 

[ & k ? d f ]  = h s k 6 k + f , U .  (3.26b) 

The vectors of the physical subspace (according to (3.9)) satisfy 

d k l q p b )  = k > 0. (3.27) 

Let us now calculate the anomaly A(G, H) for quadratic functions 

H = t H k l Z k Z l  G = $ G k r Z k Z f  ( H k f  = Hlk G k ,  = G i k ) .  (3 .B)  

Using (3.1) and (3.25) we get 

A, = tLEkHkjzjaz_i AG = T " E ~ G ~ ~ . Z ~ ~ , - , .  (3.29) 

In our case, the projection operator has the form 
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Therefore, for the anomaly term A(G, H) from (3.24) we can write 

(3.30) 
. .> 

1 
A = - - ( & 6 - k 6 k R H )  + m ( b 6 - k 6 - 1 6 k 6 f ' H )  + ' 

- ( G u l f ) .  
( k  

Moreover, from (3.26) and (3.29) we have the commutation relations 

[&,&I = ~ ~ H ~ I E I ~ - I .  (3.31) 

Using (3.2&), (3.27) and (3.31) we lind that in the expansion (3.30) only the fust two 
terms remain. After the calculation we get 

(3.32) 

Finally, observe that (3.32) can be used to compute the conformal anomaly [12]. 
Indeed, choosing in (3.28) the matrix 

(H ' ) k l  = lk16k+i,m k ,  E = &1,&2,. . . n = O , i l , f 2 ,  ... 
we get the generators of conformal transformations [12], and from (3.32) it follows 
that 

A" E A(Hn, H") = 6n+m,u&(n3 - n) .  

This is the central extension of Viasoro algebra. 

4. Conclusion 

In the present work we proposed a new scheme for the quantization of dynamical 
systems. We have shown that the geometric quantization [2] of Hamiltonian systems 
may be considered in a certain sense as a covariant quantization of constrained 
systems. These constrained systems are the extensions of the initial Hamiltonian 
systems. In addition, the extension scheme is universal and can easily be applied to 
the case of field theory. 

In particular, the proposed quantization scheme provides the possibility to analyse 
the existence of anomalous terms in the commutation relations of the physical 
operators. 

The structure of the physical operators, (3.19), depends on the choice of the CY- 

parameter. Generally, the operators corresponding to different a's are not unitary 
equivalent, but for every CY they correspond to some operator ordering. In this 
respect, the dependence of the operator ordering on the existence of anomalies can 
be studied. We hope that using the representation (3.19) it will be possible to develop 
a perturbative method for calculating the spectra of physical operators (to lind the 
ground state energy and etc.) 

Further development of the above proposed quantization scheme will give a 
deeper understanding of the connection between the covariant and non-covariant 
quantizations. We hope to develop this scheme of quantization for a realistic field 
theory model. 
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Note added. Since mmpleting this work we became aware of an ineresting paper [13] in which a 
similar analpis of the anomalous ( e m s  in the mmmutation relations (Schwinger Iem) was done in the 
framework of geometric quantization. 
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